MicroRNA-23b Inhibits the Proliferation and Migration of Heat-Denatured Fibroblasts by Targeting Smad3
نویسندگان
چکیده
BACKGROUND Skin grafting with the preservation of denatured dermis is a novel strategy for the treatment of burn-injured skin. Denatured dermis has the ability to restore to the morphology and function of normal skin, but the underlying molecular mechanism is elusive. MicroRNAs (miRNA) are small noncoding RNAs and regulate normal physiology as well as disease development. In this study, we assessed the potential role of miRNA-23b (miR-23b) in the regulation of cell proliferation and migration of heat-denatured fibroblasts and identified the underlying mechanism. METHODS The expression of miR-23b in denatured dermis and heat-denatured fibroblasts was detected by quantitative real-time polymerase chain reaction (RT-PCR). The effects of miR-23b on cell proliferation and migration of heat-denatured fibroblasts were assessed by transient transfection of miR-23b mimics and inhibitor. The target gene of miR-23b and the downstream pathway were further investigated. RESULTS miR-23b was downregulated in denatured dermis and heat-denatured fibroblasts. Downregulation of miR-23b dramatically promoted the proliferation and migration of heat-denatured fibroblasts. Subsequent analyses demonstrated that Smad3 was a direct and functional target of miR-23b in heat-denatured fibroblasts, which was validated by the dual luciferase reporter assay. Moreover, immunohistochemistry analysis showed that denatured dermis from rats displayed enhanced staining of Smad3. In addition, miR-23b modulated denatured dermis by activating the Notch1 and TGF-β signaling pathways. CONCLUSIONS Our findings suggest that downregulation of miR-23b contributes to the recovery of denatured dermis, which may be valuable for treatment of skin burns.
منابع مشابه
Down-regulation of microRNA-23b aggravates LPS-induced inflammatory injury in chondrogenic ATDC5 cells by targeting PDCD4
Objective(s): Osteoarthritis (OA), characterized by degradation of articular cartilage, is a leading cause of disability. As the only cell type present in cartilage, chondrocytes play curial roles in the progression of OA. In our study, we aimed to explore the roles of miR-23b in the lipopolysaccharide (LPS)-induced inflammatory injury. Materials and Methods: LPS-induced cell injury of ATDC5 ce...
متن کاملmiR-100 Inhibits the Growth and Migration of Burn-Denatured Fibroblasts
BACKGROUND Burn-denatured dermis is able to regain the function and shape of normal dermis; however, the potential mechanisms are still vague. The aim of this study was to investigate roles of miR-100 involved in the growth and migration of burn-denatured fibroblasts. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction(qRT-PCR) was used to assess the expression of miR-100. Tra...
متن کاملThe Role of Human Adult Peripheral and Umbilical Cord Blood Platelet-Rich Plasma on Proliferation and Migration of Human Skin Fibroblasts
BACKGROUND Wound healing is a complex and dynamic process following damage in tissue structures. Due to extensive skin damage caused by burn injuries, this study determined the role of human adult peripheral and umbilical cord blood platelet-rich plasma on proliferation and migration in human skin fibroblasts. METHODS Platelet-rich plasma (5, 10, 15, 20 and 50% PRP) from human umbilica...
متن کاملMicroRNA-140 Inhibits the Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer
MicroRNA-140, a cartilage-specific microRNA, has recently been implicated in the cancer progression. However, the comprehensive role of miR-140 in the invasion and metastasis of colorectal cancer (CRC) is still not fully understood. In this study, we confirmed that miR-140 downregulates SMAD family member 3 (Smad3), which is a key downstream effector of the TGF-β signaling pathway, at the trans...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کامل